Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
J Virol ; 96(23): e0133422, 2022 12 14.
Article En | MEDLINE | ID: mdl-36377875

Viruses utilize a plethora of strategies to manipulate the host pathways and hijack host machineries for efficient replication. Several DNA and few RNA viruses are reported to interact with proteins involved in DNA damage responses (DDRs). As the DDR pathways have never been explored in alphaviruses, this investigation intended to understand the importance of the DDR pathways in chikungunya virus (CHIKV) infection in vitro, in vivo, and ex vivo models. The study revealed that CHIKV infection activated the Chk2 and Chk1 proteins associated with the DDR signaling pathways in Vero, RAW264.7, and C2C12 cells. The comet assay revealed an increase in DNA damage by 95%. Inhibition of both ATM-ATR kinases by the ATM/ATR kinase inhibitor (AAKi) showed a drastic reduction in the viral particle formation in vitro. Next, the treatment of CHIKV-infected C57BL/6 mice with this drug reduced the disease score substantially with a 93% decrease in the viral load. The same was observed in human peripheral blood mononuclear cell (hPBMC)-derived monocyte-macrophage populations. Additionally, silencing of Chk2 and Chk1 reduced viral progeny formation by 91.2% and 85.5%, respectively. Moreover, CHIKV-nsP2 was found to interact with Chk2 and Chk1 during CHIKV infection. Furthermore, CHIKV infection induced cell cycle arrest in G1 and G2 phases. In conclusion, this work demonstrated for the first time the mechanistic insights regarding the induction of the DDR pathways by CHIKV that might contribute to the designing of effective therapeutics for the control of this virus infection in the future. IMPORTANCE Being intracellular parasites, viruses require several host cell machineries for effectively replicating their genome, along with virus-encoded enzymes. One of the strategies involves hijacking of the DDR pathways. Several DNA and few RNA viruses interact with the cellular proteins involved in the DDR pathways; however, reports regarding the involvement of Chk2 and Chk1 in alphavirus infection are limited. This is the first study to report that modulation of DDR pathways is crucial for effective CHIKV infection. It also reveals an interaction of CHIKV-nsP2 with two crucial host factors, namely, Chk2 and Chk1, for efficient viral infection. Interestingly, CHIKV infection was found to cause DNA damage and arrest the cell cycle in G1 and G2 phases for efficient viral infection. This information might facilitate the development of effective therapeutics for controlling CHIKV infection in the future.


Chikungunya Fever , Chikungunya virus , DNA Damage , Virus Replication , Animals , Humans , Mice , Chikungunya Fever/genetics , Chikungunya virus/physiology , Leukocytes, Mononuclear/metabolism , Mice, Inbred C57BL , RAW 264.7 Cells , Vero Cells , Chlorocebus aethiops , Cell Cycle Checkpoints
2.
PLoS Pathog ; 17(11): e1009667, 2021 11.
Article En | MEDLINE | ID: mdl-34780576

Chikungunya virus (CHIKV) epidemics around the world have created public health concern with the unavailability of effective drugs and vaccines. This emphasizes the need for molecular understanding of host-virus interactions for developing effective targeted antivirals. Microarray analysis was carried out using CHIKV strain (Prototype and Indian) infected Vero cells and two host isozymes, MAPK activated protein kinase 2 (MK2) and MAPK activated protein kinase 3 (MK3) were selected for further analysis. The substrate spectrum of both enzymes is indistinguishable and covers proteins involved in cytokines production, endocytosis, reorganization of the cytoskeleton, cell migration, cell cycle control, chromatin remodeling and transcriptional regulation. Gene silencing and drug treatment were performed in vitro and in vivo to unravel the role of MK2/MK3 in CHIKV infection. Gene silencing of MK2 and MK3 abrogated around 58% CHIKV progeny release from the host cell and a MK2 activation inhibitor (CMPD1) treatment demonstrated 68% inhibition of viral infection suggesting a major role of MAPKAPKs during late CHIKV infection in vitro. Further, it was observed that the inhibition in viral infection is primarily due to the abrogation of lamellipodium formation through modulation of factors involved in the actin cytoskeleton remodeling pathway. Moreover, CHIKV-infected C57BL/6 mice demonstrated reduction in the viral copy number, lessened disease score and better survivability after CMPD1 treatment. In addition, reduction in expression of key pro-inflammatory mediators such as CXCL13, RAGE, FGF, MMP9 and increase in HGF (a CHIKV infection recovery marker) was observed indicating the effectiveness of the drug against CHIKV. Taken together it can be proposed that MK2 and MK3 are crucial host factors for CHIKV infection and can be considered as important target for developing effective anti-CHIKV strategies.


Actins/metabolism , Anilides/pharmacology , Antiviral Agents/pharmacology , Chikungunya Fever/prevention & control , Chikungunya virus/drug effects , Cytoskeleton/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Tetrahydronaphthalenes/pharmacology , Actins/drug effects , Animals , Chikungunya Fever/virology , Chlorocebus aethiops , Male , Mice , Mice, Inbred C57BL , Vero Cells , Virus Release
3.
EMBO Rep ; 22(11): e52948, 2021 11 04.
Article En | MEDLINE | ID: mdl-34467632

The type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear. In this study, we show that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in a robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC-I antigen presentation and stress granule signaling are enhanced in IRGM-deficient cells, indicating a robust cell-intrinsic antiviral immune state. Consistently, IRGM-depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviverdae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Altogether, our work highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS-CoV-2, CHIKV, and Zika virus.


GTP-Binding Proteins/antagonists & inhibitors , Virus Diseases/immunology , Animals , Antiviral Agents/pharmacology , Humans , Mice , Virus Replication
4.
Virol J ; 18(1): 103, 2021 05 26.
Article En | MEDLINE | ID: mdl-34039377

INTRODUCTION: The emergence of drug resistance and cross-resistance to existing drugs has warranted the development of new antivirals for Herpes simplex viruses (HSV). Hence, we have designed this study to evaluate the anti-viral activity of 1-[(2-methyl benzimidazole-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT), against HSV-1. METHOD: Molecular docking was performed to assess the affinity of MBZM-N-IBT for HSV-1 targets. This was validated by plaque assay, estimation of RNA and protein levels as well as time of addition experiments in vitro. RESULT: Molecular docking analysis suggested the inhibitory capacity of MBZM-N-IBT against HSV-1. This was supported by the abrogation of the HSV-1 infectious viral particle formation with the IC50 value of 3.619 µM. Viral mRNA levels were also reduced by 72% and 84% for UL9 and gC respectively. MBZM-N-IBT also reduced the protein synthesis for gC and ICP8 significantly. While mRNA of ICP8 was not significantly affected, its protein synthesis was reduced by 47%. The time of addition experiment revealed the capacity of MBZM-N-IBT to inhibit HSV-1 at early as well as late stages of infection in the Vero cells. Similar effect of MBZM-N-IBT was also noticed in the Raw 264.7 and BHK 21 cells after HSV-1 infection. Supported by the in silico data, this can be attributed to possible interference with multiple HSV targets including the ICP8, ICP27, UL42, UL25, UL15 and gB proteins. CONCLUSION: These results along with the lack of acute oral toxicity and significant anti-inflammatory effects suggest its suitability for further evaluation as a non-nucleoside inhibitor of HSV.


Benzimidazoles/pharmacology , Herpes Simplex , Herpesvirus 1, Human , Isatin/analogs & derivatives , Animals , Chlorocebus aethiops , Cricetinae , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Isatin/pharmacology , Mice , Molecular Docking Simulation , RAW 264.7 Cells , RNA, Messenger , Vero Cells , Viral Proteins/genetics , Virus Replication
5.
Front Immunol ; 10: 786, 2019.
Article En | MEDLINE | ID: mdl-31031770

Chikungunya virus (CHIKV), a mosquito-borne Alphavirus, is endemic in different parts of the globe. The host macrophages are identified as the major cellular reservoirs of CHIKV during infection and this virus triggers robust TNF production in the host macrophages, which might be a key mediator of virus induced inflammation. However, the molecular mechanism underneath TNF induction is not understood yet. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV to address the above-mentioned question. It was observed that CHIKV induces both p38 and JNK phosphorylation in macrophages in a time-dependent manner and p-p38 inhibitor, SB203580 is effective in reducing infection even at lower concentration as compared to the p-JNK inhibitor, SP600125. However, inhibition of p-p38 and p-JNK decreased CHIKV induced TNF production in the host macrophages. Moreover, CHIKV induced macrophage derived TNF was found to facilitate TCR driven T cell activation. Additionally, it was noticed that the expressions of key transcription factors involved mainly in antiviral responses (p-IRF3) and TNF production (p-c-jun) were induced significantly in the CHIKV infected macrophages as compared to the corresponding mock cells. Further, it was demonstrated that CHIKV mediated TNF production in the macrophages is dependent on p38 and JNK MAPK pathways linking p-c-jun transcription factor. Interestingly, it was found that CHIKV nsP2 interacts with both p-p38 and p-JNK MAPKs in the macrophages. This observation was supported by the in silico protein-protein docking analysis which illustrates the specific amino acids responsible for the nsP2-MAPKs interactions. A strong polar interaction was predicted between Thr-180 (within the phosphorylation lip) of p38 and Gln-273 of nsP2, whereas, no such polar interaction was predicted for the phosphorylation lip of JNK which indicates the differential roles of p-p38 and p-JNK during CHIKV infection in the host macrophages. In summary, for the first time it has been shown that CHIKV triggers robust TNF production in the host macrophages via both p-p38 and p-JNK/p-c-jun pathways and the interaction of viral protein, nsP2 with these MAPKs during infection. Hence, this information might shed light in rationale-based drug designing strategies toward a possible control measure of CHIKV infection in future.


Chikungunya Fever/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Macrophages/metabolism , Tumor Necrosis Factor-alpha/metabolism , Viral Nonstructural Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Biomarkers , Chikungunya Fever/virology , Chikungunya virus , Chlorocebus aethiops , Female , Host-Pathogen Interactions , Macrophages/immunology , Male , Mice , Models, Molecular , Phosphorylation , Protein Binding , RAW 264.7 Cells , Structure-Activity Relationship , Vero Cells
6.
Sci Rep ; 8(1): 7118, 2018 05 08.
Article En | MEDLINE | ID: mdl-29740052

Naive T cells are known to express the modest level of TLR4 while it is known to go down during TCR activation. However, information towards the requirement of TLR4 signaling during TCR or mitogenic activation of naive wild-type T cells remains scanty. Here we have investigated the endogenous functional expression of TLR4 in naive mice T cells during TCR and mitogenic stimulation in presence of VIPER peptide (VP), an established inhibitor of TLR4 signaling. As expected we found that TLR4 expression goes down during TCR and mitogenic activation. Interestingly, we observed that VP treatment restores TLR4 expression on those activated T cells. Moreover, VP was found to regulate such activation of naive T cell as evident by reduction of CD25, CD69 expression, effector cytokines (IL-2, IFN-γ, TNF) production, T cell proliferation and down-regulation of T cell activation-dependent Fas (CD95), FasL (CD95L) expression. Together, our current observation highlights a possible requirement of TLR4 responses in T cells, which might have possible implication towards the pathogenic acute phase activation of naive T cells.


Cell Proliferation/genetics , T-Lymphocytes/drug effects , Toll-Like Receptor 4/genetics , Viral Proteins/pharmacology , Animals , Antigens, CD/genetics , Antigens, Differentiation, T-Lymphocyte/genetics , Cell Proliferation/drug effects , Cytokines/drug effects , Cytokines/genetics , Fas Ligand Protein/genetics , Gene Expression Regulation/drug effects , Interleukin-2 Receptor alpha Subunit/genetics , Lectins, C-Type/genetics , Mice , Signal Transduction/drug effects , T-Lymphocytes/metabolism , Toll-Like Receptor 4/antagonists & inhibitors , Tumor Necrosis Factor Receptor Superfamily, Member 7/drug effects , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Viral Proteins/chemistry
7.
Sci Rep ; 6: 20122, 2016 Feb 04.
Article En | MEDLINE | ID: mdl-26843462

Chikungunya virus (CHIKV) infection is one of the most challenging human Arboviral infections with global significance and without any specific antiviral. In this investigation, 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea (MBZM-N-IBT) was synthesised as a molecular hybrid of 2-methyl benzimidazole and isatin-ß-thiosemicarbazone and its anti-CHIKV property was evaluated. The release of infectious virus particles was calculated by plaque assay, expression profile of viral RNA was estimated by RT-PCR and viral protein profiles were assessed by Western blot and FACS analyses. The safety index of MBZM-N-IBT was found to be >21. The CHIKV infectious viral particle formation was abrogated around 76.02% by MBZM-N-IBT during infection in mammalian system and the viral RNA synthesis was reduced by 65.53% and 23.71% for nsP2 and E1 respectively. Surprisingly, the viral protein levels were reduced by 97% for both nsP2 and E2. In the time-of-addition experiment it abrogated viral infection at early as well as late phase of viral life cycle, which indicates about multiple mechanisms for its anti-CHIKV action. In silico analysis justified development of MBZM-N-IBT with good affinities for potential target proteins of CHIKV and related virus. With predictions of good drug-likeness property, it shows potential of a drug candidate which needs further experimental validation.


Benzimidazoles/pharmacology , Chikungunya virus/physiology , Isatin/analogs & derivatives , Thiourea/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Benzimidazoles/chemistry , Benzimidazoles/metabolism , Binding Sites , Blotting, Western , Cell Survival/drug effects , Chlorocebus aethiops , Flow Cytometry , Isatin/chemistry , Isatin/metabolism , Isatin/pharmacology , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Thiourea/chemistry , Thiourea/metabolism , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Internalization/drug effects
8.
J Virol Methods ; 199: 86-94, 2014 Apr.
Article En | MEDLINE | ID: mdl-24462973

The recent epidemics of Chikungunya viruses (CHIKV) with unprecedented magnitude and unusual clinical severity have raised a great public health concern worldwide, especially due to unavailability of vaccine or specific therapy. This emphasizes the need to understand the biological processes of this virus in details. Although CHIKV associated research has been initiated, the availability of CHIKV specific reagents for in-depth investigation of viral infection and replication are scanty. For Alphavirus replication, non-structural protein 2 (nsP2) is known to play a key regulatory role among all other non-structural proteins. The current study describes the development and characterization of nsP2 specific monoclonal antibody (mAb) against a synthetic peptide of CHIKV. Reactivity and efficacy of this mAb have been demonstrated by ELISA, Western blot, Flow cytometry and Immunofluorescence assay. Time kinetic study confirms that this mAb is highly sensitive to CHIKV-nsP2 as this protein has been detected very early during viral replication in infected cells. Homology analysis of the selected epitope sequence reveals that it is conserved among all the CHIKV strains of different genotypes, while analysis with other Alphavirus sequences shows that none of them are 100% identical to the epitope sequence. Moreover, using the mAb, three isoforms of CHIKV-nsP2 have been detected in 2D blot analysis during infection in mammalian cells. Accordingly, it can be suggested that the mAb reported in this study can be a sensitive and specific tool for experimental investigations of CHIKV replication and infection.


Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/isolation & purification , Antigens, Viral/analysis , Chikungunya virus/isolation & purification , Chikungunya virus/physiology , Viral Nonstructural Proteins/analysis , Animals , Antigens, Viral/immunology , Blotting, Western , Chikungunya virus/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Mice, Inbred BALB C , Sensitivity and Specificity , Viral Nonstructural Proteins/immunology , Virus Cultivation
9.
Channels (Austin) ; 7(6): 483-92, 2013.
Article En | MEDLINE | ID: mdl-23912940

Sperm cells exhibit extremely high sensitivity in response to slight changes in temperature, osmotic pressure and/or presence of various chemical stimuli. In most cases throughout the evolution, these physico-chemical stimuli trigger Ca (2+)-signaling and subsequently alter structure, cellular function, motility and survival of the sperm cells. Few reports have recently demonstrated the presence of Transient Receptor Potential (TRP) channels in the sperm cells from higher eukaryotes, mainly from higher mammals. In this work, we have explored if the sperm cells from lower vertebrates can also have thermo-sensitive TRP channels. In this paper, we demonstrate the endogenous presence of one specific thermo-sensitive ion channel, namely Transient Receptor Potential Vanilloid family member sub type 1 (TRPV1) in the sperm cells collected from fresh water teleost fish, Labeo rohita. By using western blot analysis, fluorescence assisted cell sorting (FACS) and confocal microscopy; we confirm the presence of this non-selective cation channel. Activation of TRPV1 by an endogenous activator NADA significantly increases the quality as well as the duration of fish sperm movement. The sperm cell specific expression of TRPV1 matches well with our in silico sequence analysis. The results demonstrate that TRPV1 gene is conserved in various fishes, ranging from 1-3 in copy number, and it originated by fish-specific duplication events within the last 320 million years (MY). To the best of our knowledge, this is the first report demonstrating the presence of any thermo-sensitive TRP channels in the sperm cells of early vertebrates as well as of aquatic animals, which undergo external fertilization in fresh water. This observation may have implications in the aquaculture, breeding of several fresh water and marine fish species and cryopreservation of fish sperms.


Cyprinidae , Gene Expression Regulation , Sperm Motility , TRPV Cation Channels/metabolism , Temperature , Animals , Humans , Male , Spermatozoa/cytology , Spermatozoa/metabolism , Spermatozoa/physiology
...